skip to main content


Search for: All records

Creators/Authors contains: "Wilmers, Christopher C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rigorous understanding of how environmental conditions impact population dynamics is essential for species conservation, especially in mixed‐use landscapes where source–sink dynamics may be at play. Conservation of large carnivore populations in fragmented, human‐dominated landscapes is critical for their long‐term persistence. However, living in human‐dominated landscapes comes with myriad costs, including direct anthropogenic mortality and sublethal energetic costs. How these costs impact individual fitness and population dynamics are not fully understood, partly due to the difficulty in collecting long‐term demographic data for these species. Here, we analyzed an 11‐year dataset on puma (Puma concolor) space use, mortality, and reproduction in the Santa Cruz Mountains, California, USA, to quantify how living in a fragmented landscape impacts individual survival and population dynamics. Long‐term exposure to housing density drove mortality risk for female pumas, resulting in an 18‐percentage‐point reduction in annual survival for females in exurban versus remote areas. While the overall population growth rate appeared stable, reduced female survival in more developed areas resulted in source–sink dynamics across the study area, with 42.1% of the Santa Cruz Mountains exhibiting estimated population growth rates <1. Since habitat selection is often used as a proxy for habitat quality, we also assessed whether puma habitat selection predicted source and sink areas. Patterns of daytime puma habitat selection predicted source areas, while time‐of‐day‐independent habitat selection performed less well as a proxy. These results illuminate the individual‐ and population‐level consequences of habitat fragmentation for large carnivores, illustrating that habitat fragmentation can produce source–sink dynamics that may not be apparent from other metrics of habitat quality. Locally, conserving high‐quality source habitat within the Santa Cruz Mountains is necessary to support long‐term puma population persistence. More broadly, source–sink dynamics may at play for other carnivore populations in similar fragmented systems, and linking landscape conditions to population dynamics is essential for effective conservation. Caution should be used in inferring habitat quality from habitat selection alone, but these results shed light on metrics of selection that may be better or worse proxies to identify source areas for large carnivores.

     
    more » « less
  2. Abstract

    Conserving large carnivores requires protecting landscape spaces that encompass all spatiotemporal scales of their movement. Large carnivores normally roam widely, but habitat loss and fragmentation can constrain their movement in ways that restrict access to resources and increase encounters with humans and potential conflict. Facilitating carnivore population coexistence with humans across landscapes requires conservation plans informed by patterns of carnivore space use, particularly at the human–wildlife interface.

    We sought to understand lion space use in Laikipia, Kenya. We conducted a path‐selection function analysis using GPS collar data from 16 lions to assess patterns of space use across a range of spatial scales (sedentary to home range expanses; 0, 12.5, 25 and 50 km) and temporal scales (day, dusk, night and dawn). Path‐selection results were then incorporated into space use maps.

    We found that most landscape features influenced path‐selection at the broadest spatial scale (50 km), representative of home range‐wide movement, thereby demonstrating a landscape‐wide human impact on lion space use. We also detected sub‐diurnal variation in lion path‐selection which revealed limited space use during daylight hours and increased space use overnight.

    Our results highlight that optimal support for human–lion coexistence should be temporally adaptive at sub‐diurnal scales. Furthermore, spatial approaches to lion conservation may be better generalized at broad spatial scales so that land management plans can account for home range patterns in lion space use.

     
    more » « less
  3. Energetic demands and fear of predators are considered primary factors shaping animal behavior, and both are likely drivers of movement decisions that ultimately determine the spatial ecology of wildlife. Yet energetic constraints on movement imposed by the physical landscape have only been considered separately from those imposed by risk avoidance, limiting our understanding of how short-term movement decisions scale up to affect long-term space use. Here, we integrate the costs of both physical terrain and predation risk into a common currency, energy, and then quantify their effects on the short-term movement and long-term spatial ecology of a large carnivore living in a human-dominated landscape. Using high-resolution GPS and accelerometer data from collared pumas (Puma concolor), we calculated the short-term (i.e., 5-min) energetic costs of navigating both rugged physical terrain and a landscape of risk from humans (major sources of both mortality and fear for our study population). Both the physical and risk landscapes affected puma short-term movement costs, with risk having a relatively greater impact by inducing high-energy but low-efficiency movement behavior. The cumulative effects of short-term movement costs led to reductions of 29% to 68% in daily travel distances and total home range area. For male pumas, long-term patterns of space use were predominantly driven by the energetic costs of human-induced risk. This work demonstrates that, along with physical terrain, predation risk plays a primary role in shaping an animal’s “energy landscape” and suggests that fear of humans may be a major factor affecting wildlife movements worldwide.

     
    more » « less
  4. Abstract

    As keystone species, apex predators play a role in structuring most ecosystems through competition and facilitation, thereby affecting community structure, prey abundance and behavior, vegetation, and abiotic processes. Apex predators are also highly threatened and have been extirpated from much of North America, leading to mesocarnivores, such as coyotes (Canis latrans), becoming de facto apex predators in many ecosystems. However, it is unknown if these mesocarnivores can fill the same functional keystone role as true apex predators. We compared the spatial and temporal habitat use of mesocarnivores in two similar study systems, one with pumas (Puma concolor) and one without, to determine how the role of coyotes in structuring the carnivore community changes in the absence of pumas. We used multispecies occupancy and relative abundance models to examine the spatial avoidance of pumas and coyotes by the smaller mesocarnivores, and temporal overlap and avoidance‐attraction ratios to examine temporal avoidance. We found that coyotes partially fill the functional role of apex predators, but with weaker effects than pumas. Where pumas were absent, site use intensity and relative abundance increased for coyotes (180% and 1250%) and raccoons (Procyon lotor, 308% and 3273%) and decreased for bobcats (Lynx rufus, 36% and 55%), gray foxes (Urocyon cinereoargenteus, 13% and 32%), and striped skunks (Mephitis mephitis, 3% and 12%). Coyotes and raccoons shifted their temporal activity away from pumas, while gray foxes shifted their activity closer to pumas. Detection likelihood decreased for all species after detection of a puma (67%–93%) or coyote (46%–94%) in both sites, but small mesocarnivores avoided pumas more than coyotes in the study area with both. Interactions between carnivores are complex and best understood with multiple measures and in the context of the full community. While coyotes appear to suppress smaller mesocarnivores by some measures (e.g., temporal avoidance), they do not by others (e.g., spatial avoidance) and have overall weaker effects than pumas. Our results suggest that coyotes are not a substitute for apex predators, and conserving true apex predators is likely important for maintaining ecosystem health.

     
    more » « less
  5. Abstract

    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.

     
    more » « less
    Free, publicly-accessible full text available March 18, 2025
  6. Abstract

    Domestic dogs are the most abundant large carnivore on the planet, and their ubiquity has led to concern regarding the impacts of dogs as predators of and competitors with native wildlife. If native large carnivores perceive dogs as threatening, impacts could extend to the community level by altering interactions between large carnivores and their prey. Dog impacts may be further exacerbated if these human-associated predators are also perceived as indicators of risk from humans. However, observational approaches used to date have led to ambiguity regarding the effects of dog presence on wildlife. We experimentally quantified dog impacts on the behavior of a native large carnivore, presenting playbacks of dog vocalizations to pumas in central California. We show that the perceived presence of dogs has minimal impacts on puma behavior at their kill sites, and is no more likely to affect total feeding time at kills than non-threatening controls. We previously demonstrated that pumas exhibit strong responses to human cues, and here show that perceived risk from human presence far exceeds that from dogs. Our results suggest that protected areas management policies that restrict dogs but permit human access may in some cases be of limited value for large carnivores.

     
    more » « less
  7. Abstract

    Coastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g−1(N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g−1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g−1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. At these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.

     
    more » « less
  8. null (Ed.)
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. 
    more » « less
  9. COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.

     
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  10. Abstract

    When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited.

    Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions.

    We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lionsPanthera leoin Laikipia, Kenya and pumasPuma concolorin the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk.

    For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk.

    Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.

     
    more » « less